100 research outputs found

    Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography.

    Get PDF
    OBJECTIVE: Plain radiography has been the mainstay of imaging assessment in osteoarthritis for over 50 years, but it does have limitations. Here we present the methodology and results of a new technique for identifying, grading, and mapping the severity and spatial distribution of osteoarthritic disease features at the hip in 3D with clinical computed tomography (CT). DESIGN: CT imaging of 456 hips from 230 adult female volunteers (mean age 66 ± 17 years) was reviewed using 3D multiplanar reformatting to identify bone-related radiological features of osteoarthritis, namely osteophytes, subchondral cysts and joint space narrowing. Scoresheets dividing up the femoral head, head-neck region and the joint space were used to register the location and severity of each feature (scored from 0 to 3). Novel 3D cumulative feature severity maps were then created to display where the most severe disease features from each individual were anatomically located across the cohort. RESULTS: Feature severity maps showed a propensity for osteophytes at the inferoposterior and superolateral femoral head-neck junction. Subchondral cysts were a less common and less localised phenomenon. Joint space narrowing <1.5 mm was recorded in at least one sector of 83% of hips, but most frequently in the posterolateral joint space. CONCLUSIONS: This is the first description of hip osteoarthritis using unenhanced clinical CT in which we describe the co-localisation of posterior osteophytes and joint space narrowing for the first time. We believe this technique can perform several important roles in future osteoarthritis research, including phenotyping and sensitive disease assessment in 3D.KP acknowledges support of an Arthritis Research UK Research Progression award, and the Cambridge NIHR Biomedical Research Centre (MEBB theme). TT acknowledges the support of an Evelyn Trust Clinical Training Fellowship award. None of the funding sources had a role in study design, data handling, writing of the report, or decision to submit the paper for publication.This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S1063458414009996?np=

    A new CT grading system for hip osteoarthritis.

    Get PDF
    OBJECTIVES: We have developed a new grading system for hip osteoarthritis using clinical computed tomography (CT). This technique was compared with Kellgren and Lawrence (K&L) grading and minimum joint space width (JSW) measurement in digitally reconstructed radiographs (DRRs) from the same CT data. In this paper we evaluate and compare the accuracy and reliability of these measures in the assessment of radiological disease. DESIGN: CT imaging of hips from 30 female volunteers aged 66 ± 17 years were used in two reproducibility studies, one testing the reliability of the new system, the other testing K&L grading and minimum JSW measurement in DRRs. RESULTS: Intra- and inter-observer reliability was substantial for CT grading according to weighted kappa (0.74 and 0.75 respectively), while intra- and inter-observer reliability was at worst moderate (0.57) and substantial (0.63) respectively for DRR K&L grading. Bland-Altman analysis showed a systematic difference in minimum JSW measurement of 0.82 mm between reviewers, with a least detectable difference of 1.06 mm. The area under the curve from ROC analysis was 0.91 for our CT composite score. CONCLUSIONS: CT grading of hip osteoarthritis (categorised as none, developing and established) has substantial reliability. Sensitivity was increased when CT features of osteoarthritis were assigned a composite score (0 = none to 7 = severest) that also performed well as a diagnostic test, but at the cost of reliability. Having established feasibility and reliability for this new CT system, sensitivity testing and validation against clinical measures of hip osteoarthritis will now be performed.KP acknowledges support of an Arthritis Research UK Research Progression award, and the Cambridge NIHR Biomedical Research Centre (MEBB theme). TT acknowledges the support of an Evelyn Trust Clinical Training Fellowship award. None of the funding sources had a role in study design, data handling, writing of the report, or decision to submit the paper for publication.This is the final version. It was first published by Elsevier at http://www.sciencedirect.com/science/article/pii/S106345841401000

    Association between femur size and a focal defect of the superior femoral neck.

    Get PDF
    Within each sex, there is an association between hip fracture risk and the size of the proximal femur, with larger femurs apparently more susceptible to fracture. Here, we investigate whether the thickness and density of the femoral cortex play a role in this association: might larger femurs harbour focal, cortical defects? To answer this question, we used cortical bone mapping to measure the distribution of cortical mass surface density (CMSD, mg/cm(2)) in cohorts of 308 males and 125 females. Principal component analysis of the various femoral surfaces led to a measure of size that is linearly independent from shape. After mapping the data onto a canonical femur surface, we used statistical parametric mapping to identify any regions where CMSD depends on size, allowing for other confounding covariates including shape. Our principal finding was a focal patch on the superior femoral neck, where CMSD is reduced by around 1% for each 1% increase in proximal-distal size (p<0.000005 in the males, p<0.001 in the females). This finding appears to be consistent with models of functional adaptation, and may help with the design of interventional strategies for reducing fracture risk.KESP acknowledges the support of the NIHR Biomedical Research Centre, Cambridge, and funding from Arthritis Research UK (reference 20109). The MrOS study is supported by National Institutes of Health (NIH) funding. The following institutes provide support: the National Institute on Aging, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Center for Advancing Translational Sciences and the NIH Roadmap for Medical Research, under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160 and UL1 TR000128.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.bone.2015.06.024

    Predicting Hip Fracture Type With Cortical Bone Mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study.

    Get PDF
    Hip fracture risk is known to be related to material properties of the proximal femur, but fracture prediction studies adding richer quantitative computed tomography (QCT) measures to dual-energy X-ray (DXA)-based methods have shown limited improvement. Fracture types have distinct relationships to predictors, but few studies have subdivided fracture into types, because this necessitates regional measurements and more fracture cases. This work makes use of cortical bone mapping (CBM) to accurately assess, with no prior anatomical presumptions, the distribution of properties related to fracture type. CBM uses QCT data to measure the cortical and trabecular properties, accurate even for thin cortices below the imaging resolution. The Osteoporotic Fractures in Men (MrOS) study is a predictive case-cohort study of men over 65 years old: we analyze 99 fracture cases (44 trochanteric and 55 femoral neck) compared to a cohort of 308, randomly selected from 5994. To our knowledge, this is the largest QCT-based predictive hip fracture study to date, and the first to incorporate CBM analysis into fracture prediction. We show that both cortical mass surface density and endocortical trabecular BMD are significantly different in fracture cases versus cohort, in regions appropriate to fracture type. We incorporate these regions into predictive models using Cox proportional hazards regression to estimate hazard ratios, and logistic regression to estimate area under the receiver operating characteristic curve (AUC). Adding CBM to DXA-based BMD leads to a small but significant (p < 0.005) improvement in model prediction for any fracture, with AUC increasing from 0.78 to 0.79, assessed using leave-one-out cross-validation. For specific fracture types, the improvement is more significant (p < 0.0001), with AUC increasing from 0.71 to 0.77 for trochanteric fractures and 0.76 to 0.82 for femoral neck fractures. In contrast, adding DXA-based BMD to a CBM-based predictive model does not result in any significant improvement.The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of Health funding. The following institutes provide support: the National Institute on Ageing (NIA), the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. GMT, AHG, DMB and KESP contributed to the conception and design of the study. All authors were involved in the analysis or interpretation of the data, contributed to the manuscript, and approved the final version. KESP acknowledges the support of the NIHR Biomedical Research Centre, Cambridge. KESP received funding from Arthritis Research UK (ARUK ref. no. 20109). GMT takes responsibility for the integrity of the data analysis.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/jbmr.255

    An exploratory study into measuring the cortical bone thickness from CT in the presence of metal implants

    Get PDF
    Purpose The aim of this study was to develop and evaluate a method for measuring the cortical bone thickness from computed tomography (CT) scans with metallic implants and to assess the benefits of metal artefact removal software. Methods A previously validated technique based on the fitting of a cortical model was modified to also model metal structures when required. Cortical thickness measurements were taken over intact bone segments and compared with the corresponding contralateral bone segment. The evaluation dataset includes post-operative CT scans of a unipolar hemi-arthroplasty, a dynamic hip screw fixation, a bipolar hemi-arthroplasty, a fixation with cannulated screws and a total hip arthroplasty. All CT scans were analysed before and after processing with metal artefact removal software. Results Cortical thickness validity and accuracy were improved through the use of a modified metalwork-optimised model and metal artefact removal software. For the proximal femoral segments of the aforementioned cases, the cortical thickness was measured with a mean absolute error of 0.55, 0.39, 0.46, 0.53 and 0.69 mm. The hemi-pelvis produced thickness errors of 0.51, 0.52, 0.52, 0.47 and 0.67 mm, respectively. Conclusions The proposed method was shown to measure cortical bone thickness in the presence of metalwork at a sub-millimetre accuracy. This new technique might be helpful in assessing fracture healing near implants or fixation devices, and improve the evaluation of periprosthetic bone after hip replacement surgery.This study was funded by Eli Lilly, Europe. TW, GMT, AHG and KESP received research grants from Eli Lilly. KESP is also funded by the Cambridge NIHR Biomedical Research Centre (BRC). The Evelyn Trust funded GMT

    Hypovitaminosis D among rheumatology outpatients in clinical practice.

    Get PDF
    OBJECTIVES: A role for vitamin D in the pathogenesis of autoimmune and inflammatory diseases is emerging. We undertook an audit of 25-hydroxyvitamin D (25OHD) investigation and treatment in rheumatology outpatients. METHODS: Serum 25OHD requests were matched to electronic medical records from rheumatology and metabolic bone clinics (April 2006-March 2007). Data were analysed separately for two groups, 'Documented osteoporosis/osteopaenia' (Group 1) and 'General rheumatology outpatients' (Group 2, sub-divided by diagnosis). Hypovitaminosis D was defined by 25OHD levels <50 nmol/l. Values were compared with healthy adults to calculate geometric z-scores. RESULTS: A total of 263 patients were included (Group 1, n = 122; Group 2, n = 141) with an overall median 25OHD of 44 nmol/l. The 25OHD level among general rheumatology patients (median 39 nmol/l, mean z score -1.2, was statistically significantly lower than among osteoporotic/osteopaenic patients (median 49 nmol/l, mean z score of -0.9, p < 0.05 for the difference). 25OHD was lower in inflammatory arthritis and chronic pain/fibromyalgia than in other groups. Prescribing was recorded in 100 in Group 1 (of whom 95% were prescribed calcium/800 IU cholecalciferol) and 83 in Group 2 (91% calcium/800 IU). Only 31% of the patients with 25OHD <50 nmol/l would have been identified using general guidelines for screening patients at 'high risk' of hypovitaminosis D. CONCLUSIONS: Improved guidelines for managing hypovitaminosis D in rheumatology patients are needed. We found a high prevalence of hypovitaminosis D among secondary care patients in rheumatology and widespread supplementation with 800 IU cholecalciferol. Substantially reduced levels of serum 25OHD were identified among patients with inflammatory arthritis and chronic pain
    • …
    corecore